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1. It is shown that the Calder-Salzer technique
for computing munition expenditures probably ime-
plles that the moments of the dosage distributien
do not exist, A simple modification of the Salzer
inversion technigue is belng tried which does not
require "scaling”. 2, The diffusion model treated
heretofore is simplified by introducing dimensione
less parameters. This new procedure enables one
to obtalin a familty of depositions as the result
of a single integration. 3. An outline of a neu
stochastic model of turbulent diffusion is given.
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1. MUNITION EXPENDITURE

In the previous progress report we indicated that the
Calder Salzer technique for 1nyert1né a laplace Transform
imposés nnknown conditiens on the moments of the multi-munition
dosage distribution. |

Of course;, as Calder points out a direct use of the
Salzer scheme would imply that all momentsiﬁre 1nfinite.w-~~
Indeed it would imply that the totai area under the "distribution®
is infinite. That 15 1f we sssume tggt the Laplace Transform,

% , 'k b
@ . Ke) = Je P 3 5,

then the dorsage distribution is

(2) eo, - 5 xpt
* r=l_ (r-1)!

L ]

Clearly if £(D) 4s given by (2) then

J £(D)dD = =
0

and (D) cannot ba a probability density. Actually Calder
uses the laplace Trensform of the cumulative distribution function,
so that one must rerlace f£(D) in (1) and (2) by F(D). As he

points out

k b D't
(3) F(D} = 5 L
r=1 (r-1)t
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implies that F(») = » and not 1, as we must have for any

cumlative distribution function. Differentiating (3) we have
“?

k b, p*

) £(p) = ria (r-2)1

from which we draw the same conclusion, Another difficulty
with {2) is that the polynomial goeg through (C,0). Thus
it implies zero probabllity of obtaining dosages in the neigh.

borhood of zero.

-

Calder handles both objections as follows. To¢ get
aroﬁnd the non-zero probabllity of zero coverage'he truncates
the dosage distribution at the lower end. To get around the
unboundedness of the polynomial at D = ® he introduces a |
scaling factor (so that the modified F(D) 1s bounded by 1)}.
Thus, in effect he uses a different polynomial fit for each
D=value., It 1s difficult to estimate the effect that this mod-
ification has on the original physical problem. However, 1t is
reasonable to assume that a family of polynomials can be made
to fit a function better than a single polynomial,

In addition, although the scaling techniquz enables one
to £it an F(D) with the property that F(D)~1 as D= o ,
one would probably need a stronger scaling factor to guarantee
that all moments exlst. One still has




t

A 4
1lim J Df(D)AD = & ,
A= O

so that this method really implies that the moments of the
dosage distribution do not exist.

It should also be pointed out that the®theoretical
Justification for fitting (D) by a polynomial i3 related to
the Welerstrapf Approximation Theorem which states that any cons
tinuous function can be closely approximated Ly a polynomi&l in
D for real D satisfylng 0 <a <D <D . Notice that this
theorem holds for functions over finite intervals, but that we °
are dealing with Laplace transforms which are integrals defined
over an infinite range. We can then show that p& using'the un-
3caled Laplace Transform method it is not possible to "fit" the
bounded functions by & polynomial. To rigorize the scaling tech-
nique we need, a corrollary to the Welerstrap Theorem, which
shows that a sequence of polynomials will do the trick. The
Calder technique employs a sequence of polynomlals, each of

which fits at one of the sequences of D-values.

. p———

¥ In the last progress report (p.2) we wrote the Laplace Transforn
in terms of moments of the distribution. In analogy with the
noment generating function we should have used

- i
K8y = 3 (-1t 2 :
1=0 18

The (-1)! was inadvertently omitted.
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Figure 1. Polynomial approximation to F(D)

We are now in the process of trying a less sophisticated
technique .than scaling to allow for the fact tﬁat a polynomial
is infinite at D = w ., It consists in fitting thé polynomial
between D=0 and D = D, and then arbitrarily approximating
F(D) . by |

F(D)=1 , D>D, . .
Ir Do is large enough so that wé are really not interested 1n
the probability of getting dosages above Do and if our approx-

imation gives F(D).g 1l D.S'DO , this procedure may be satlsfactory.




2. ATMOSPHERIC DIFFUSION v

In an attempt to simplify the diffusion model treated
in these reports a version which depends on dimen?ionless para-
meters 1s proposeds As a by-~product of this new procedure we
are enabled to obtain a }amily of depositions by mui%iplying by
simple expressions the result of integrations, similar to (1¢)
and {11) of the previous progress rcport.

®

Our deposition of agent, K a3 a function of dilstance

C

dovmwind, x was given by

Q

2
(5) K(x) = & [ h(Q)t(x,0; a0
&4
-Where
(6) n{2;1,5) = ——2r— exp- {4ngtep)®,
er)e t 262
l+p ~f/x

T ) 1 'y
“,7) t(x Q) I e —- ...) )

’ F(l+p)
£3) p = cfl .

[ o e

& lle now make two changes. In place of x we consider
the dimensionless parameter x/f . For any value of f it is

then a simple matter to treat K as a function of x. Secondly
the integration 1s performed with p, rather than Q as the
variable of integration. Thus

- 6 -




(9) . o? h(p3e,t) v(r,pldp = M(r;9,t) , say

Ac
where
{10) r = x/f

h(p;0,t) = ——te expl{£0R + (fnc-u))®

(ps0,t) T exp| - ]
(11)
= _].'_._ exp[.,. [ér_lg" (‘p)]al
VBT t 2t2
(12) 9= p e fn ’
. . |

(13) v(r,p) = [P{14p) p1*P &F ') .

The meteorologilcal parameters are incorporated in L, ¢
and f = Q/(Ac). Thus, each curve M can be easily transformed
by (10), (11) and (12) to a set of curves, K, for specific
meteorological conditions and particle size distributions., The

conditlons treated in previous reports are given by A = ,167% 5%?'99
"~ m® see

and the values in Table 1. Xt should be noted that in all

these cases ¢ , the mean of the "normal” distribution in (11)
was negative., Since ¢ , rather than | seems to be the per-
tinent "mean" to consider in evaluating K it was decided to

compute some values for ¢=0 and ¢=l , vhere we expect diffusion

-7 -



to play a larger role. For this reason. M, of (9) 1s being
evaluated on the IBM 650 for the parameters of Table 2 by
Mr. Daniel H. Salkoff, who performed the previous calculations.

by n et £nc t . o) :
514 4,06 | .08603  1.7505 .53 4 2.30
514 3.26 °  .08603  1.7595 .57 + 1.50
1028 4,06 J17206 2,453 .53 + 1,61

1028 3.26 ° ,17206 2,453 .57 + .81

Table 1, Parameters in previous deposition calculations,

Q t Py Po

o . .3 40 2,5

0 55 .19 5.2

"6 1.0 .05 " 20.0
-1 .55 S8 T334
1471 =

Table 2. Values of parameters being used in computing M as
given in Equation (14), where p, ~e ox3r




This new procedure cuts out the necessity for evaluating
L , the integral with p and f (or r) replaced by 2p, 2f
(or %). If one actually evaluated (9) exactly, the change in
these parameters would merely change the integrating grid and

glve different values of distance dovmwind. However, ve, of
course, replace (9) by

Pa
: X
(14) Mwz==~ [ h(p,0,8) v(r,p)dp

P
where p, and p, are chosen 8o that the contribution to M
of values where Py and below p , are negligible, Replacing
P by 2p would also change the limits of integration, thereby
onitting important values of p and replacing them by values
vhich make virtually no contribution to M .

An outline of a new stochastic model of turbulent
diffusion is given in an appendix to this report. Of course, -
the detalls are yet to be programmed for computatlion on a digital
computer, and these results would have to be compared with field
test data to see how well the model fits. |

Lor f Jle L

Leon H. Herbach
Project Director
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Memo 523.13 M.AM./L.H./I.P. April 1961
Iay 1061

- A stochastic model of turbulent diffusion

The purpose of thls memorandum 1s to formulate a new model
of turbulent dlffusion by a simulation of the physleal process.
Thc model will describe the process during a fixed instant of

it may be described )
time, In more pletuvcsque language.,as being a snapsbot" of
the physleal process. It 1s hoped in later reports to describe

a .continuous model for the same physical phenomena.

It 1o assumed that an instantaneous point source 1ocated§
at X = xoﬁ¥ 0, ¥=35=0 originates as a "mass! Q, whilch
may be descirlbed mathematlcally by the delta funcetion, or unlt
impulse function, Q, 5(x,y) vwvhere &(x,y) 1s defined by

3x,y) =0 it x#0 or y#0
L1 3{x,y) = it =0 and ¥ =0 .

, 00
. QO !' f 6{313"}

PN o BP0}

il
O
(@]

Our next ascumphtion is that she mass wili diffuse according
%o a "randeom walk® process whose mechanism is described below.
le shall be particularly interested in studyling the correlation
funetiong of The stochastic peocess involved. These correlaition
functions will be used Go describe the rate of diffusion, and

the pener 2l features of the process mechanism, The corvelation

* e 10



135.2

function as generated will consider the relations between fixed
dlserete points. '

It iz assumed that the "mass" undergoes a splitting which
glves rise to two “daughter" masses. lach of these daughters
has a total "mass® Q0/2 and is centered at the points

£ < xg + ?‘1)' syl oxy 6t s

(.,_
o
——

where egi) and 6(1) are normally and independently distributed

with means zero and variances cf .

The "splitting” process contimues in this fashion except:
that the variances of the new ¢e%s and &% are ci R
2 2
‘ £<o®,
&t the points xéi' R yéi) vhere i =1,2,,..,32.) The

i =2,3,4,5, with of<of<of<o until we arrive
pracess 1is iilustrated in Pigure 1. That 1s, the process conw
tirues until we have generated 25 or 32 points.

The effeet of wind can be taken into account by this model.
If & constant wind 1s blowing from some direction, its effect
on the distribution of the sample points can be allowed for
by asz'wning that the mean of the first points € » 6y {1=1,2)
are non-zero., For example if the wind is from the SW we may
Lalke E(ei) =1 , E(éi) =1 ,

At cach of the 32 points which have been generated we -
now conceive of the mass, Q°/25 as being distributed according

e 11
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(x$2), yga))-ﬂyf(xge),yéé))imwh"

/

/ S a2
(x{l),égl));,/.w ! o T
- =1,z
(xJ(‘Q),y{Q\)); ) ,

o A3) (3) .
(23735 ), (x(B)’yQB))

T wagn— |

(xilh);glu))

Flgure 1. The Splitting Process
Generating the Random
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to a squared exponential, This i1s the limiting result if we
continue the splitting ad infinitum with small variances.
Thus, the density at any point (u,v) 4n space is

32 )
Y & el A [(u - 23 4 (v - 1))
i3) 2:1 (or)os exp( o [u- %5 ) +(v-37) 1)

where the points are generated in the following manner:

(xgo30) = ({1, () L {2), 5(3))
(1), 52y o 1),y (1Y), (=f2), 543))

(x£2) ’ y](_a)) = (xgl’)) ’ ygS)) 2 (xéu) P ygl»))

wy I S O R O B S N v G )
O S R S S I R A

(«§2), v =5, 505y, {8, 5{8))

G ) - D 5Ty,

. <

The reason for using a squared exponential as the limiting
distribution for the "splitting" of steps 6 to infinity =
¢houshy the sesuliing distribubion 1s cingular, 12 o5 Jollrsg
Wha grerape auount in any region afver an Infinilc wmulcr of
gtonn s glven by Bhe eirgular normnl integral. We are 1o ofivel
reslocing vhe rernlts after step rhve, DY thalir avernges., I
in elesw, frowm the way, the variances of subscquént piepr Qerrsasd.

that Che varlability in tﬁqpe latter steps is negligible wpiarsd

with the eanlies steps, Actual calculations will indieate uberhe




. . 13.5
a good approximation will be obtained if this "averag;.ng" is done
after step 5, 6, or some other number.

It should also be noted that we have still not taken
time into account, since all stages in the splitting process
are aseumed, to take piaoe instantansously. Ti‘nle is considered
by replacing o2 in (3) by o2f(t) , vhere f£(t) 1s an in-
creasing function of time. The first function to be considered
vwill be f£(t) = t,

Now we may consider the correlation structure. It
may be noted that the o0°s which must be used here will have
to be obtained experimentally. The correlation structure for
the first two steps is given as

g0
Ro'[o °.z]-‘,()12
(9) 0
Rl-a‘l'z

In considering the diagram shown in Figure 2 it 1s noted that
if the correlation structure is given in the following manner
of descridbing the splitting process we have

(10) Xx=x,=0 , y=y,=0 with o,

as the splitting continues we obdtain ét the first step the
following o's , where x, = first mass and X, , the second-
mass,; considering ali possible combinations



15.6

' 4 (C)
NG
4
{a) (b}
Figure 2. Developmsnt of Covariance Structure
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and at the next step we obtain the following:

X001

0

Now consider the correlations of these realizations:

2 o' )
(13) At Ry = [62- 2],=- og 1, (1dentity matrix}
o %

31-0112-124-00[0 E]
X 2




13.8
or
Ry =Ey* Ryt of I, * I
(14) o

[ 2 8 [ }
. na'a[°32 Ey + 0) By 12]
roy I I

Ry=Epr Ry + 03 Lo L0 I, .

It will be noted that the covariance matrix at any given
realization of the process gives the history of the "mass" up
to this point, and essentially describes t@e fact that a high
correlation will be found for points which lie in a close re-
lation physically to each other, While they have a low corre-
lation with the "mess" points which 1lie at some distarice from
each other, This is noted in Pigure 2 and seems to agree with
the physical theory.

To end the matter of notation we will designate the points
at any given realization in their natural order. At the fifth
step we will number the realizations as Xys LpseoosXzgn o

Of course, the details of this model still have to be woried
cut. Among the problems to be investigested are: (i) Hew can
oue obtain the mean varilance and the distribution of dosage ab
a point or set of points? (11) What is the limiting distribution
of dosage a5 a point? If we drop squared exponentlals uniformly
over a large target the resulting distribution is c.d. We will
nrobably be involved with a distribution which is the sua of

c.d’s,




